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Hypothesis Testing

@ Toy example for statistical testing: Administer a drug to n patients
for 2 weeks. Let X; be the reduction in blood pressure seen in the i-th
patient. Model X1, Xa, ..., X; as i.i.d. N(u,o?). Problem: Test u = 0.
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Hypothesis Testing

@ Toy example for statistical testing: Administer a drug to n patients
for 2 weeks. Let X; be the reduction in blood pressure seen in the i-th
patient. Model X1, Xa, ..., X; as i.i.d. N(u,o?). Problem: Test u = 0.

@ If u = 0, we have X, ~ N(0,0?/n). Intuitively, a value more than 2
standard deviations away from the mean is unusual.

X
That s, if | / Z/_
(o n

@ In statistics, we often set a small a € (0, 1) (say, @ = 0.05,0.01) and
reject the hypothesis if

| > 2, we reject u = 0.

n |
= Z1-q/2
’0' vn

where zi_, /2 is the (1 — @/2)th percentile of N(0, 1).



Inference for Covariances on High-dim Time Series Data

@ Neuroimaging methods @ Financial/economic data
(EEG, fMRI, MEG, etc.) U
U High-dim time series modelling
Time series analysis VAR, VARMA, ARCH, GARCH, etc.

U U

Functional brain connectivity Interaction and co-movement

Require simultaneous inference for covariances

FRANKLIN RESOURCE:!

BARCI %
uss A&‘
T. ROWE PRIC OLDMAN SACHS

LEHMAN BHOTHER@ " WBEAR STEARNS

RUDENTIAL FINANCIAL

Brain Network Financial Network



Inference for Posterior Means in MCMC Experiments

@ Markov chain on the state space X @ Functionh: X - R

- e ST e.g. means, quantiles, etc.
N 7
Eqh = [, h(y)r(dy)

|/
MCMC: h = n~' £, h(Y;). How accurate? CLT"

1 G.L. Jones. On the Markov chain central limit theorem. Probability surveys. 2004.
J.M. Flegal, G.L. Jones. Implementing Markov Chain Monte Carlo: Estimating with Confidence. Handbook of MCMC. 2011
Y.F. Atchadé. Markov Chain Monte Carlo confidence intervals. Bernoulli. 2016.



Inference for Posterior Means in MCMC Experiments

@ Markov chain on the state space X @ Functionh: X - R

- e ST e.g. means, quantiles, etc.
N 7
Eqh = [, h(y)r(dy)
U
MCMC: h = n~' £, h(Y;). How accurate? CLT"

U
What if we have hy, ho, ..., hy with p := p, — c0?

hi (Y1) hi(Yz2) hi(Yn)

ha(Y4) ha(Y2) ha(Yy)
X1 - . s> A2 — . 5t n = .

ho (Y1) ho(Y2) ho(Yn)

1 G.L. Jones. On the Markov chain central limit theorem. Probability surveys. 2004.
J.M. Flegal, G.L. Jones. Implementing Markov Chain Monte Carlo: Estimating with Confidence. Handbook of MCMC. 2011
Y.F. Atchadé. Markov Chain Monte Carlo confidence intervals. Bernoulli. 2016.
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Kolmogorov-Smirnov Test

Let Xj € R, i € Z, be i.i.d. random variables. Test the hypothesis that

Ho : P(X; < x) = F(x), forxeR.



Kolmogorov-Smirnov Test

Test statistic T, = sup,c; VN|Fa(x) — F(x)|

Asymptotic distribution®

P(Tn > X) N, Z (_1)m+1efzm2x2
A.N. Kolmogorov m=1

2A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuar. 1933.
J.L. Doob. Heuristic approach to the Kolmogorov-Smirnov Theorems. Annals of Mathematical Statistics. 1949.
M.D. Donsker. Justification and extension of Doob’s heuristic approach to the Kolmogorov- Smirnov Theorems. 1952.



Kolmogorov-Smirnov Test

Test statistic Ty = supye; VA |Fa(x) = F())|
Asymptotic distribution®

P(Ty>x) 2 3 (—1)m1e2m
m=1

Doob’s heuristic argument:

I B
X; Xp - X

Fa(x1) = F(x1) B(F(x1))
Fn(x2) = F(xe) B(F(x))
n . ﬁ .

Fa(x) = F(x.) B(F(x.))

2A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuar. 1933.
J.L. Doob. Heuristic approach to the Kolmogorov-Smirnov Theorems. Annals of Mathematical Statistics. 1949.
M.D. Donsker. Justification and extension of Doob’s heuristic approach to the Kolmogorov- Smirnov Theorems. 1952.



Kolmogorov-Smirnov Test for High-dim Time Series

Let X; € RY be a stationary process. Test the hypothesis that

Ho : P(Xj < x) = Fj(x), forxeR, 1<j<d.

Test statistic Max SUPyer vV |Fri(x) = Fi(x)]
<J<

Asymptotic distribution?



Kolmogorov-Smirnov Test for High-dim Time Series

Let X; € RY be a stationary process. Test the hypothesis that

Ho : P(Xj < x) = Fj(x), forxeR, 1<j<d.

Test statistic Max SUPyer \/ﬁ|Fnj(X) - FJ(X)|
<<
Asymptotic distribution?
Another Look:
7,
@ Discretization U XXX
@ Higher dimension max max Vi |F(x:) - Fi(x;)|  |p=dL

1<j<d 1<e<L

@ Temporal and cross-sectional dependence

High-dimensional CLT = {vn[Fy(x) - Fi(x)].1<j<d1<e<L}




CLT for Time Series

@ Stationary X; € R, EXi=pu, E(XX;) < co.
Under suitable weak dependence conditions 2, CLT for p = 1 or p fixed:

0

T2 Z )= N(0,X) where ¥ = Z E((Xo = 1)(Xk —1)")

k=-c0

3M. Rosenblatt. A central limit theorem and a strong mixing condition. PNAS. 1956.

I.A. Ibragimov, Ju. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff. 1971.
W.B. Wu. Nolinear system theory: another look at dependence. PNAS. 2005.
J. Dedecker et al. Weak Dependence: With Examples and Applications. Springer. 2007.



CLT for Time Series

@ Stationary X; € R, EXi=pu, E(XX;) < co.
Under suitable weak dependence conditions 2, CLT for p = 1 or p fixed:

0

T2 Z )= N(0,X) where ¥ = Z E((Xo = 1)(Xk —1)")

k=-c0

@ Portnoy (1986)*: CLT fails for i.i.d. random vectors if p > +/n.

3M. Rosenblatt. A central limit theorem and a strong mixing condition. PNAS. 1956.

I.A. Ibragimov, Ju. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff. 1971.
W.B. Wu. Nolinear system theory: another look at dependence. PNAS. 2005.
J. Dedecker et al. Weak Dependence: With Examples and Applications. Springer. 2007.

4S. Portney. On the central limit theorem in RP when p — co. Probability Theory and Related Fields. 1986.



High-dimensional CLT: GA in RP

Gaussian Approximation® (GA) for i.i.d. random vectors in RP:

sup|P( VX, = ple = U) = P(1Z]0 = u)| —0, asnp— o
u=0

under certain conditions, where Z = (Z,...,2Z,)" ~ N(0, Cov(Xj)).

5\/. Chernozhukov, D. Chetnerikov and K. Kato. Gaussian approximations and multiplier bootstrap for maxima

of sums of high-dimensional random vectors. Annals of Statistics. 2013.



sup|IP>( VX, — pleo = U) = P(|Z]e > u)| -0, asnp— o

u=0
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High-dimensional CLT: GA in RP

under certain conditions, where Z = (Z, ..

(@) Xj i.i.d. ~ t(df), n = 200, p = 400.

Gaussian Approximation® (GA) for i.i.d. random vectors in RP:

.»Zp)" ~ N(0, Cov(X)).
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V. Chernozhukov, D. Chetnerikov and K. Kato. Gaussian approximations and multiplier bootstrap for maxima
of sums of high-dimensional random vectors. Annals of Statistics. 2013.

(b) X;j i.i.d. ~ t(5), n = 100.



A General Framework of High-dim Stationary Processes

Stationary and causal processes of the form (nonlinear Wold representation)

X,' = (X,'1,...,X,‘p)T = G(...,é‘,‘q,é‘,‘)

@ Input: &, i € Z are i.i.d innovations or shocks that derive the system®.

@ Filter: G(*) = (g1(-), .-+, Go("))"-

@ Output: Xi = G(...,&i-1,&). “How output depends on input?” 7

GG.E.P. Box, G.M. Jenkins. Time Series Analysis: Forecasting and Control. Springer. 1970.
7N. Wiener. Nonlinear Problems in Random Theory. Wiley. 1958
M.B. Priestley. Nonlinear and Nonstationary Time Series Analysis. Academic Press. 1988
H. Tong. Non-linear Time Series: A Dynamical System Approach. Springer. 1990.



A General Framework of High-dim Stationary Processes

Stationary and causal processes of the form (nonlinear Wold representation)

‘ X,‘ = ()(,'1,...,)<,‘p)T = G(...,E,'_1,8,') ‘

@ Input: g, i € Z are i.i.d innovations or shocks that derive the system®.

@ Filter: G(:) = (g1(-),.... 9o (*))".
@ Output: Xi = G(...,&i-1,&). “How output depends on input?”?

Examples: Linear processes (e.g. VAR, ARMA) and nonlinear transforms,
bilinear models, Volterra processes, Markov chain models,
threshold/exponential autoregressive models (TAR/EAR),
ARCH/GARCH type models, FARIMA-GARCH models, etc.

GG.E.P. Box, G.M. Jenkins. Time Series Analysis: Forecasting and Control. Springer. 1970.
7N. Wiener. Nonlinear Problems in Random Theory. Wiley. 1958
M.B. Priestley. Nonlinear and Nonstationary Time Series Analysis. Academic Press. 1988
H. Tong. Non-linear Time Series: A Dynamical System Approach. Springer. 1990.



A General Framework of High-dim Stationary Processes

Stationary and causal processes of the form (nonlinear Wold representation)

X,' = (X,‘1,...,X,‘p)T = G(...,é‘,‘q,é‘,‘) ‘

@ Input: &, i € Z are i.i.d innovations or shocks that derive the system®.

@ Filter: G(-) = (91(-),.... 9o (*))"-
@ Output: Xi = G(...,&i_1,&). “How output depends on input?” 7

Example: High-dimensional linear processes
[ss]
Xi = Z Ak&ik
k=0

where ¢g; are i.i.d. with Eg; = 0 and Ea,?j =1, A e RP*P satisfy Y7 tr(A] Ay) < oo.

GG.E.P. Box, G.M. Jenkins. Time Series Analysis: Forecasting and Control. Springer. 1970.
7N. Wiener. Nonlinear Problems in Random Theory. Wiley. 1958
M.B. Priestley. Nonlinear and Nonstationary Time Series Analysis. Academic Press. 1988
H. Tong. Non-linear Time Series: A Dynamical System Approach. Springer. 1990.



Functional Dependence Measures

@ Functional dependence measure (Wu, 2005)8

X,':G(...,8_1,80,81,...,8,') q22,'20s1§]Sp
U Sias = X = Xl
X,-* = G(...,871,88,81,...,8,') Wiq = || X _X,'*lw”q

@ High-dimensional dependence

° ° _

. Cross-sectional dependence e | — Temporal dependence
1/q

. Tao = (20, IX15,) o| - Vg =maxigg Xllge

° ° —

8W.B. Wu. Nonlinear system theory: another look at dependence. PNAS. 2005.



High-dimensional CLT: GA in RP

@ Assume EX; = u. The p X p long-run covariance matrix is

o

E=(ox)= > (k). where [(k) = B(Xo — )X ~ ).

k=—00
@ LetZ=(Z.....2))" ~ N(0,%).

Theorem
@ Assume there exists a constant ¢ > 0 s.t. min,.., o > c.
@ Under certain conditions on n, p and dependence measures.

sup P( max W|)_(,,,» —/,t,'|/\/07 < u) = ]P’( 5nax|Zj|/\/cﬂ < u) ’ -0
<j<p <j<p

u=0

D. Zhang, W.B. Wu. Gaussian approximation for high dimensional time series. Annals of Statistics. 2017



High-dimensional CLT: GA in RP

@ Assume EX; = u. The p x p long-run covariance matrix is

)

T = (o)) = Y T(k), where [(k) =E(Xo - ) (X —1)".

k=-c0
@ LetZ=(Z,....2,)" ~ N(0,%).

Theorem
@ Assume there exists a constant ¢ > 0 s.t. min..., o > c.

@ Under certain conditions on n, p and dependence measures.

F s Vil A < o) ~¥( sl < ) | 0

sup

u>0 155

Xo Xo

D. Zhang, W.B. Wu. Gaussian approximation for high dimensional time series. Annals of Statistics. 2017



Some applications

Application 1: Network connectivity detection by the inference of covariances.
Application 2: Inference for many posterior means in MCMC experiments.
Application 3: Testing the distribution of high dimensional data

°
e o .- ° * h1(Y,) X;1 1{X,'1 < x}
.
e o .- ° hz(Y,) Xio 1{X,'2 < x}
S — | Y= . || :
. : : :
e o ... ° pxp . hp(Y,) Xig 1{XidSX}
°

p?



High-dimensional Inference for Parametric Time Series

Vector autoregressive (Sims, 1980)°

VAR(): X; = A1 Xi-1 + ...+ AgXi—g + &i.

Old friend: Likelihood ratio test, F-test
Wald test, t-test

Christopher A. Sims

9C.A. Sims. Macroeconomics and reality. Econometrica. 1980



High-dimensional Inference for Parametric Time Series

Vector autoregressive (Sims, 1980)°

VAR(): X; = A1 Xi-1 + ...+ AgXi—g + &i.

Old friend: Likelihood ratio test, F-test
Wald test, t-test

Christopher A. Sims

Statistical phenomenon in economic data:
high dimension = degrees of freedom left \,
fat-tailed residuals = false rejection of the null

9C.A. Sims. Macroeconomics and reality. Econometrica. 1980



Estimation and Inference

Rewrite VAR(d) modelas ¥ = Z B 4+ € .
S~—— S~ —— ——
npx1 npxdp? dp2x1 npx1



Estimation and Inference

Rewrite VAR(d) modelas ¥ = Z B 4+ € .
S~—— S~ —— ——
npx1 npxdp? dp2x1 npx1
@ Moderately high-dim case dp = o(n), establish asymptotic theory for

B = argming|Y - ZB3 = (Z272)'Z7Y.
@ Very high-dim case n = o(dp), consider Lasso/Danzig-type estimator

[3 = arg minﬁedez (|Y - Z,3|§ + A16l4 ),
B = argmin |Bl; subjectto |Z7Z8 - Z7 Y| < A.
@ For heavy-tailed innovations, apply robust estimation approach
B = argminﬁH(Y -Zp),
where H can be Huber, regression quantile, L9 regression, etc.



Granger Causality Test

@ Granger causality test: VAR-X model

Xi = AXi1 + €,
Yi = BXi—1 + CYi-1 + &i.

Let W, = (X7, Y;")", ni = (¢].&")". Then we can write the model as

A 0
W; = MW,_1 +n;, where M = 5 ol

Testif B=0.



Portmanteau Test

@ One-dimensional Box-Pierce, Ljung-Box portmanteau test statistic:
m m
Qgp = nZﬁ or Qg =n(n+2) Z 2/(n - k).
k=1 k=1
@ Another natural choice of test statistic:
Kn = Vn max 9k — y«l.
1<k<m
@ For high dimensional data, need to establish an asymptotic theory on

Sn
_ & omf, 2 _ & _mf
Qn = nkZ1 - Ef2  and %, \/ﬁéq(a;;n Ik — Efle,

where s, — o and s, = o(n).



Further Considerations on Gaussian Approximation

Various y? Tests
Kolmogorov-Smirnov Test  Mean Inference  Cramér-von Mises Test

¢ o S .

L., Gaussian Approximation L, Gaussian Approximation
oA
v
f(VnX,) e f(2)
oA
v
f(X13X2" ,Xn) < f(Z13223 ,Zn)



Pearson’s y? test

n subjects

00000000

N, Ny| eee NN,
0, 0, 0, 0,




Pearson’s y? test

n subjects

d@@é?@@b
B

Goal: Test the hypothesis that the observations (Nj, ..., Np) satisfy

(Ny,...,Np) ~ Multi(n; 64, ...,60p), where 61 + ...+ 6p = 1.



Pearson’s y? Statistic

Pearson’s y? statistic:

p 2 P n(h 2
2_ 3 (N; = néj) -y nG-6)" o N

j=1 no j=1 !
Asymptotic theory: when p is small and fixed, y? =>X’2)_1, by the CLT
{(N; = n8)/(ng))' 2, j=1,...,p} = N(0, %), with oy = 1,y — \/6;6;.
Rule of thumb in classical statistical textbooks: n6; > 5 for all j.
Decision rule: For significance level a € (0, 1), we reject the hypothesis if

X° > X5 1 1_q» the (1 - a)-th quantile of x5_;.



Motivating Example: Social Life Feeling Data

1490 respondents, 2° distinct response patterns, 5 propositions:

1. Anyone can raise his living standard if he is willing to work at it.

2. Our country has too many poor people who can do little to raise their living standard.
3. Individuals are poor because of the lack of effort on their part.

4. Poor people could improve their lot if they tried.

5. Most people have a good deal of freedom in deciding how to live.

x 00000 01000 00001 10000 00100 01001 11000 10001 01100 00101 00010 10100 11001 01101 01010 11100
O 156 174 26 8 127 35 8 2 208 26 14 4 2 65 36 19
E 1620 1740 222 52 1223 319 8.1 11 208.7 302 16.9 8.3 23 653 376 193

00011 10101 10010 00110 01011 11101 11010 10011 01110 00111 10110 11011 01111 11110 10111 11111
9 4 1 66 13 10 5 3 195 16 18 3 129 31 9 68
5.8 3.0 1.8 56.5 16.2 8.8 53 09 1827 318 112 34 1309 499 9.6 56.7

m O x

X: response pattern
O: Observed frequency for each response pattern
E: Expected frequency after fitting the logit-probit model



Theory for Pearson’s y? Test Statistic

B = (B,'1, R B,'p) ~ Multi(1 164, ... ,Qp). Let X,'j = (B,‘j - 0/')/ \/gj Then

Theorem: (i) Assume that for some 0 <6 < 1,

-
21 1 0/

Ly = nopi+or2

— 0.

Further assume o3 = o(np), where o3 = 32, 61 — p?. Then

j=1"]
SL:pIIP’()(2 <t) —]P()(fH < t)l — 0.

(i) Assume np = o(
Wi = (Zf:1 Bij/6; -

AP P(x* - (p

af,) and the Lindeberg condition holds for
p)/op. Then we have the CLT

1) < n2opt) — &(t) - 0.




Diagonal-removed y?

Due to dichotomous asymptotic distributions of y?, a diagonal-removed
version is suggested:

13 > 1xv Bu 2 o b
x 2 2 T
LI A L SN I

Theorem: Assume that for some 0 <6 < 1,
P 56
ZJ 1 01

Ly = nop1+/2

— 0.
Then

sup P(* < 1) =B (51 = (P - 1) <1)I = O(L;/™) > 0.

M. Xu, D. Zhang and W.B. Wu. Pearson’s chi-squared statistics: approximation theory and beyond Biometrika. 2019



Key Tool: High-dimensional Invariance Principle

Let X; € RP, i e N, be i.i.d. random vectors with E(X;) = 0, Cov(X;) = X.
Let Y;, i € N, be i.i.d. N(0, ) random vectors.
In the classical case with fixed dimension, due to CLT (v/nX, = N(0, X)),

sup[P(nX, X, < t) =P(nY, Y, < t)] = 0. (%)
t

Special case (Pearson’s x? test): B = (B, ..., Bp) ~ Multi(1; 64,...,6p).
Let X,'j = (B,'j - 9]')/ \/51 Then

Goal: Show () holds in the high-dimensional case where p — co.



Social Life Feeling Date Analysis

x 00000 01000 00001 10000 00100 01001 11000 10001 01100 00101 00010 10100 11001 01101 01010 11100
O 156 174 26 8 127 35 8 2 208 26 14 4 2 65 36 19
E 1620 1740 222 52 1223 319 8.1 1.1 208.7 302 16.9 8.3 2.3 653 37.6 19.3

00011 10101 10010 00110 01011 11101 11010 10011 01110 00111 10110 11011 01111 11110 10111 11111
9 4 1 66 13 10 5 3 195 16 18 3 129 31 9 68
5.8 3.0 1.8 565 16.2 8.8 53 09 1827 318 112 3.4 1309 499 9.6 56.7

m O x

Comparison of two methods:
@ Pearson’s y? test statistic y° = 38.93 with the degrees of freedom
25 — 1 — 10(number of parameters) = 21 and p-value is 0.01 based on
the approximated distribution X§1, suggesting a significant lack of fit.
@ New test statistic *y? = 4.79 and the p-value is 0.21 based on the
approximated distribution X§1 — 21, indicating the logit-probit model is
satisfactory fitted to the data. Note that Ly = 0.029 for § = 1.



High-dimensional Scheme for Classical Problems

@ Goodness of fit

e Kolmogorov-Smirnov test sUpyer [Fn(x) = F(x)I
e Cramér-von Mises test [, [Fa(x) = F(x)]2dF (x)
o x° test e.g. Pearson’s y2 test

Freeman-Tukey test
@ Joint distribution function

o Tail-dependence in stock return pairs: xi,...,Xp €1, yi,...,¥p €9
“Positive tail dependence™ P(X > x,Y > y) - P(X > x)P(Y >y) >0

o Volatility of market index (e.g. Dow Jones Industrial Average (DJIA))
P(Xn1 = X|Xp = X) = P(Xp41 > x) for large x



Thank you for your attention!



