High Dimensional Testing for non-Gaussian Data

Danna Zhang

Graduate Colloquium, University of California, San Diego (via Zoom)

January 5, 2021

Hypothesis Testing

- Toy example for statistical testing: Administer a drug to n patients for 2 weeks. Let X_i be the reduction in blood pressure seen in the i-th patient. Model X_1, X_2, \ldots, X_n as i.i.d. $N(\mu, \sigma^2)$. Problem: Test $\mu = 0$.
- If $\mu=0$, we have $\bar{X}_n \sim N(0,\sigma^2/n)$. Intuitively, a value more than 2 standard deviations away from the mean is unusual. That is, if $\left|\frac{\bar{X}_n}{\sigma/\sqrt{n}}\right| \geq 2$, we reject $\mu=0$.
- In statistics, we often set a small $\alpha \in (0,1)$ (say, $\alpha = 0.05, 0.01$) and reject the hypothesis if

$$\left|\frac{\bar{X}_n}{\sigma/\sqrt{n}}\right| \ge z_{1-\alpha/2}$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ th percentile of N(0,1).

Hypothesis Testing

- Toy example for statistical testing: Administer a drug to n patients for 2 weeks. Let X_i be the reduction in blood pressure seen in the i-th patient. Model X_1, X_2, \ldots, X_n as i.i.d. $N(\mu, \sigma^2)$. Problem: Test $\mu = 0$.
- If $\mu=0$, we have $\bar{X}_n \sim N(0,\sigma^2/n)$. Intuitively, a value more than 2 standard deviations away from the mean is unusual. That is, if $\left|\frac{\bar{X}_n}{\sigma/\sqrt{n}}\right| \geq 2$, we reject $\mu=0$.
- In statistics, we often set a small $\alpha \in (0,1)$ (say, $\alpha = 0.05, 0.01$) and reject the hypothesis if

$$\left|\frac{\bar{X}_n}{\sigma/\sqrt{n}}\right| \ge z_{1-\alpha/2}$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ th percentile of N(0,1).

Hypothesis Testing

- Toy example for statistical testing: Administer a drug to n patients for 2 weeks. Let X_i be the reduction in blood pressure seen in the i-th patient. Model X_1, X_2, \ldots, X_n as i.i.d. $N(\mu, \sigma^2)$. Problem: Test $\mu = 0$.
- If $\mu = 0$, we have $\bar{X}_n \sim N(0, \sigma^2/n)$. Intuitively, a value more than 2 standard deviations away from the mean is unusual. That is, if $\left|\frac{\bar{X}_n}{\sigma/\sqrt{n}}\right| \geq 2$, we reject $\mu = 0$.
- In statistics, we often set a small $\alpha \in (0,1)$ (say, $\alpha = 0.05, 0.01$) and reject the hypothesis if

$$\left|\frac{\bar{X}_n}{\sigma/\sqrt{n}}\right| \ge z_{1-\alpha/2}$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ th percentile of N(0,1).

Inference for Covariances on High-dim Time Series Data

- Neuroimaging methods (EEG, fMRI, MEG, etc.)
 -][

Time series analysis

Functional brain connectivity

Financial/economic data

High-dim time series modelling VAR, VARMA, ARCH, GARCH, etc.

Interaction and co-movement

Require simultaneous inference for covariances

Brain Network

Financial Network

Inference for Posterior Means in MCMC Experiments

• Markov chain on the state space X • Function $h: X \to \mathbb{R}$

 $Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_n \rightarrow \cdots \Rightarrow \pi$ e.g. means, quantiles, etc.

- $\mathbb{E}_{\pi}h = \int_{\mathcal{X}} h(y)\pi(dy)$

MCMC: $\hat{h} = n^{-1} \sum_{i=1}^{n} h(Y_i)$. How accurate? CLT¹

$$X_{1} = \begin{pmatrix} h_{1}(Y_{1}) \\ h_{2}(Y_{1}) \\ \vdots \\ h_{p}(Y_{1}) \end{pmatrix}, X_{2} = \begin{pmatrix} h_{1}(Y_{2}) \\ h_{2}(Y_{2}) \\ \vdots \\ h_{p}(Y_{2}) \end{pmatrix}, \dots, X_{n} = \begin{pmatrix} h_{1}(Y_{n}) \\ h_{2}(Y_{n}) \\ \vdots \\ h_{p}(Y_{n}) \end{pmatrix}$$

¹G.L. Jones. On the Markov chain central limit theorem. *Probability surveys*. 2004. J.M. Flegal, G.L. Jones. Implementing Markov Chain Monte Carlo: Estimating with Confidence. Handbook of MCMC. 2011 Y.F. Atchadé, Markov Chain Monte Carlo confidence intervals, Bernoulli, 2016.

Inference for Posterior Means in MCMC Experiments

• Markov chain on the state space X • Function $h: X \to \mathbb{R}$

$$\boxed{\frac{Y_1}{1}} \rightarrow \boxed{\frac{Y_2}{1}} \rightarrow \cdots \rightarrow \boxed{\frac{Y_n}{1}} \rightarrow \cdots \Rightarrow \pi \qquad \text{e.g. means, quantiles, etc.}$$

$$\Downarrow$$

MCMC: $\hat{h} = n^{-1} \sum_{i=1}^{n} h(Y_i)$. How accurate? CLT¹

What if we have h_1, h_2, \ldots, h_p with $p := p_n \to \infty$?

$$X_{1} = \begin{pmatrix} h_{1}(Y_{1}) \\ h_{2}(Y_{1}) \\ \vdots \\ h_{p}(Y_{1}) \end{pmatrix}, X_{2} = \begin{pmatrix} h_{1}(Y_{2}) \\ h_{2}(Y_{2}) \\ \vdots \\ h_{p}(Y_{2}) \end{pmatrix}, \dots, X_{n} = \begin{pmatrix} h_{1}(Y_{n}) \\ h_{2}(Y_{n}) \\ \vdots \\ h_{p}(Y_{n}) \end{pmatrix}$$

¹G.L. Jones. On the Markov chain central limit theorem. *Probability surveys*. 2004. J.M. Flegal, G.L. Jones. Implementing Markov Chain Monte Carlo: Estimating with Confidence. Handbook of MCMC. 2011 Y.F. Atchadé, Markov Chain Monte Carlo confidence intervals, Bernoulli, 2016.

High Dimensional Time Series

<i>X</i> ₁₁	<i>X</i> ₂₁		X_{n1}
<i>X</i> ₁₂	X_{22}		X_{n2}
:	:		:
X_{1p}	X_{2p}	• • •	X _{np}
X_{11}	X_{21}		
<i>X</i> ₁₂	X_{22}		
X_{1p}	X_{2p}		
<i>X</i> ₁	X_2		X _n

High Dimensional Time Series

X_{11}	<i>X</i> ₂₁		X_{n1}
<i>X</i> ₁₂	X_{22}		X_{n2}
:	:		:
X_{1p}	X_{2p}		X _{np}
X_{11}	<i>X</i> ₂₁		X_{n1}
<i>X</i> ₁₂	X ₂₂		X_{n2}
÷	÷		÷
X_{1p}	X_{2p}	• • •	X _{np}
X ₁	<i>X</i> ₂		X _n

High Dimensional Time Series

X_{11}	<i>X</i> ₂₁		X_{n1}
<i>X</i> ₁₂	X_{22}		X_{n2}
:	:		:
X_{1p}	X_{2p}		X _{np}
<i>X</i> ₁₁	<i>X</i> ₂₁		X_{n1}
<i>X</i> ₁₂	X_{22}		X_{n2}
÷	÷		÷
X_{1p}	X_{2p}	• • •	X _{np}
<i>X</i> ₁	<i>X</i> ₂		X _n

Kolmogorov-Smirnov Test

Let $X_i \in \mathbb{R}$, $i \in \mathbb{Z}$, be i.i.d. random variables. Test the hypothesis that

$$H_0: \mathbb{P}(X_i \leq x) = F(x), \text{ for } x \in \mathbb{R}.$$

Kolmogorov-Smirnov Test

Test statistic
$$T_n = \sup_{x \in I} \sqrt{n} |F_n(x) - F(x)|$$

Asymptotic distribution²

$$\mathbb{P}\big(T_n \geq x\big) \rightarrow 2 \sum_{m=1}^{\infty} (-1)^{m+1} \mathrm{e}^{-2m^2 x^2}$$

²A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuar. 1933.
J.L. Doob. Heuristic approach to the Kolmogorov-Smirnov Theorems. Annals of Mathematical Statistics. 1949.
M.D. Donsker. Justification and extension of Doob's heuristic approach to the Kolmogorov- Smirnov Theorems. 1952.

Kolmogorov-Smirnov Test

A.N. Kolmogorov

J.L. Doob

Test statistic
$$T_n = \sup_{x \in I} \sqrt{n} |F_n(x) - F(x)|$$

Asymptotic distribution²

$$\mathbb{P}(T_n \ge x) \to 2\sum_{m=1}^{\infty} (-1)^{m+1} e^{-2m^2x^2}$$

Doob's heuristic argument:

$$\sqrt{n} \begin{pmatrix}
F_n(x_1) - F(x_1) \\
F_n(x_2) - F(x_2) \\
\vdots \\
F_n(x_L) - F(x_L)
\end{pmatrix} \Rightarrow \begin{pmatrix}
\mathbb{B}(F(x_1)) \\
\mathbb{B}(F(x_2)) \\
\vdots \\
\mathbb{B}(F(x_L))
\end{pmatrix}$$

A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuar. 1933.
 J.L. Doob. Heuristic approach to the Kolmogorov-Smirnov Theorems. Annals of Mathematical Statistics. 1949.
 M.D. Donsker. Justification and extension of Doob's heuristic approach to the Kolmogorov- Smirnov Theorems. 1952.

Kolmogorov-Smirnov Test for High-dim Time Series

Let $X_i \in \mathbb{R}^d$ be a stationary process. Test the hypothesis that

$$H_0: \mathbb{P}(X_{ij} \leq x) = F_i(x), \text{ for } x \in \mathbb{R}, \quad 1 \leq j \leq d.$$

Test statistic

$$\max_{1 \le j \le d} \sup_{x \in I} \sqrt{n} |F_{nj}(x) - F_j(x)|$$

Asymptotic distribution?

Another Look:

- Discretization
- Higher dimension

$$\bigcup \qquad \stackrel{I_1}{\underset{x_1}{\longleftarrow}} \qquad \stackrel{X_2}{\longleftarrow} \qquad \stackrel{X_1}{\longleftarrow} \qquad X_2$$

$$\max_{\substack{l < i < \ell \\ l < \ell < L}} \max_{\substack{l < l < \ell \\ l}} \sqrt{n} \left| F_{nj}(x_{\ell}) - F_{j}(x_{\ell}) \right|$$

Temporal and cross-sectional dependence

High-dimensional CLT
$$\Rightarrow$$
 $\left\{ \sqrt{n} \left[F_{nj}(x_{\ell}) - F_{j}(x_{\ell}) \right], 1 \leq j \leq d, 1 \leq \ell \leq L \right\}$

Kolmogorov-Smirnov Test for High-dim Time Series

Let $X_i \in \mathbb{R}^d$ be a stationary process. Test the hypothesis that

$$H_0: \mathbb{P}(X_{ij} \leq x) = F_j(x), \text{ for } x \in \mathbb{R}, 1 \leq j \leq d.$$

Test statistic

$$\max_{1 \le j \le d} \sup_{x \in I} \sqrt{n} |F_{nj}(x) - F_j(x)|$$

Asymptotic distribution?

Another Look:

Discretization

- $\prod \qquad \stackrel{I_1}{\underset{x_1}{\longleftarrow}} \stackrel{I_2}{\xrightarrow{\cdots}} \stackrel{\cdots}{\underset{x_L}{\longleftarrow}} X_L$
- Higher dimension

$$\max_{1 \le i \le d} \max_{1 \le \ell \le l} \sqrt{n} \left| F_{nj}(x_{\ell}) - F_{j}(x_{\ell}) \right| \qquad p = dL$$

Temporal and cross-sectional dependence

High-dimensional CLT
$$\Rightarrow$$
 $\left\{ \sqrt{n} \left[F_{nj}(x_{\ell}) - F_{j}(x_{\ell}) \right], 1 \leq j \leq d, 1 \leq \ell \leq L \right\}$

CLT for Time Series

• Stationary $X_i \in \mathbb{R}^p$, $\mathbb{E}X_i = \mu$, $\mathbb{E}(X_i^\top X_i) < \infty$. Under suitable weak dependence conditions ³, CLT for p = 1 or p fixed:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu) \Rightarrow N(0, \Sigma) \quad \text{where} \quad \Sigma = \sum_{k=-\infty}^\infty \mathbb{E}((X_0 - \mu)(X_k - \mu)^\top)$$

• Portnoy (1986)⁴: CLT fails for i.i.d. random vectors if $p \gg \sqrt{n}$.

³M. Rosenblatt. A central limit theorem and a strong mixing condition. *PNAS*. 1956.

I.A. Ibragimov, Ju. V. Linnik. Independent and Stationary Sequences of Random Variables. *Wolters-Noordhoff*. 1971. W.B. Wu. Nolinear system theory: another look at dependence. *PNAS*. 2005.

J. Dedecker et al. Weak Dependence: With Examples and Applications. Springer. 2007.

 $^{^4}$ S. Portney. On the central limit theorem in \mathbb{R}^p when $p \to \infty$, Probability Theory and Related Fields. 1986,

CLT for Time Series

• Stationary $X_i \in \mathbb{R}^p$, $\mathbb{E}X_i = \mu$, $\mathbb{E}(X_i^\top X_i) < \infty$. Under suitable weak dependence conditions ³, CLT for p = 1 or p fixed:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu) \Rightarrow N(0, \Sigma) \quad \text{where} \quad \Sigma = \sum_{k=-\infty}^\infty \mathbb{E}((X_0 - \mu)(X_k - \mu)^\top)$$

• Portnoy (1986)⁴: CLT fails for i.i.d. random vectors if $p \gg \sqrt{n}$.

³M. Rosenblatt. A central limit theorem and a strong mixing condition. *PNAS*. 1956.

I.A. Ibragimov, Ju. V. Linnik. Independent and Stationary Sequences of Random Variables. *Wolters-Noordhoff*. 1971. W.B. Wu. Nolinear system theory: another look at dependence. *PNAS*. 2005.

J. Dedecker et al. Weak Dependence: With Examples and Applications. Springer. 2007.

⁴S. Portney. On the central limit theorem in \mathbb{R}^p when $p \to \infty$. Probability Theory and Related Fields. 1986.

High-dimensional CLT: GA in \mathbb{R}^p

Gaussian Approximation⁵ (GA) for i.i.d. random vectors in \mathbb{R}^p :

$$\sup_{u>0} \left| \mathbb{P} \big(\sqrt{n} |\bar{X}_n - \mu|_{\infty} \ge u \big) - \mathbb{P} \big(|Z|_{\infty} \ge u \big) \right| \to 0, \quad \text{as } n,p \to \infty$$

under certain conditions, where $Z = (Z_1, ..., Z_p)^{\top} \sim N(0, Cov(X_i))$.

⁵V. Chernozhukov, D. Chetnerikov and K. Kato. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. *Annals of Statistics*. 2013.

High-dimensional CLT: GA in \mathbb{R}^p

Gaussian Approximation⁵ (GA) for i.i.d. random vectors in \mathbb{R}^p :

$$\sup_{u\geq 0} \left| \mathbb{P} \big(\sqrt{n} |\bar{X}_n - \mu|_{\infty} \geq u \big) - \mathbb{P} \big(|Z|_{\infty} \geq u \big) \right| \to 0, \quad \text{as } n,p \to \infty$$

under certain conditions, where $Z = (Z_1, \dots, Z_p)^{\top} \sim N(0, Cov(X_i))$.

⁵V. Chernozhukov, D. Chetnerikov and K. Kato. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. *Annals of Statistics*. 2013.

A General Framework of High-dim Stationary Processes

Stationary and causal processes of the form (nonlinear Wold representation)

$$X_i = (X_{i1}, \ldots, X_{ip})^{\mathsf{T}} = G(\ldots, \varepsilon_{i-1}, \varepsilon_i)$$

- Input: ε_i , $i \in \mathbb{Z}$ are i.i.d innovations or shocks that derive the system⁶.
- Filter: $G(\cdot) = (g_1(\cdot), \dots, g_p(\cdot))^{\top}$.
- Output: $X_i = G(..., \varepsilon_{i-1}, \varepsilon_i)$. "How output depends on input?"

⁶G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, Springer, 1970.

⁷N. Wiener. Nonlinear Problems in Random Theory. *Wiley*. 1958

M.B. Priestley. Nonlinear and Nonstationary Time Series Analysis. Academic Press. 1988

A General Framework of High-dim Stationary Processes

Stationary and causal processes of the form (nonlinear Wold representation)

$$X_i = (X_{i1}, \dots, X_{ip})^{\scriptscriptstyle op} = G(\dots, \varepsilon_{i-1}, \varepsilon_i)$$

- Input: ε_i , $i \in \mathbb{Z}$ are i.i.d innovations or shocks that derive the system⁶.
- Filter: $G(\cdot) = (g_1(\cdot), \dots, g_p(\cdot))^{\mathsf{T}}$.
- Output: $X_i = G(..., \varepsilon_{i-1}, \varepsilon_i)$. "How output depends on input?" ⁷

Examples: Linear processes (e.g. VAR, ARMA) and nonlinear transforms, bilinear models, Volterra processes, Markov chain models, threshold/exponential autoregressive models (TAR/EAR), ARCH/GARCH type models, FARIMA-GARCH models, etc.

H. Tong. Non-linear Time Series: A Dynamical System Approach. *Springer*. 1990.

⁶G.E.P. Box, G.M. Jenkins. Time Series Analysis: Forecasting and Control. *Springer*. 1970.

⁷N. Wiener. Nonlinear Problems in Random Theory. *Wiley*. 1958

M.B. Priestley. Nonlinear and Nonstationary Time Series Analysis. Academic Press. 1988

A General Framework of High-dim Stationary Processes

Stationary and causal processes of the form (nonlinear Wold representation)

$$X_i = (X_{i1}, \dots, X_{ip})^{\scriptscriptstyle T} = G(\dots, \varepsilon_{i-1}, \varepsilon_i)$$

- Input: ε_i , $i \in \mathbb{Z}$ are i.i.d innovations or shocks that derive the system⁶.
- Filter: $G(\cdot) = (g_1(\cdot), \dots, g_p(\cdot))^{\top}$.
- Output: $X_i = G(..., \varepsilon_{i-1}, \varepsilon_i)$. "How output depends on input?" ⁷

Example: High-dimensional linear processes

$$X_i = \sum_{k=0}^{\infty} A_k \varepsilon_{i-k}$$

where ε_i are i.i.d. with $\mathbb{E}\varepsilon_{ij} = 0$ and $\mathbb{E}\varepsilon_{ij}^2 = 1$, $A_k \in \mathbb{R}^{p \times p}$ satisfy $\sum_{k=0}^{\infty} \text{tr}(A_k^{\top} A_k) < \infty$.

H. Tong. Non-linear Time Series: A Dynamical System Approach. *Springer*. 1990.

⁶G.E.P. Box, G.M. Jenkins. Time Series Analysis: Forecasting and Control. *Springer*. 1970.

⁷N. Wiener. Nonlinear Problems in Random Theory. *Wiley*. 1958

M.B. Priestley. Nonlinear and Nonstationary Time Series Analysis. Academic Press. 1988

Functional Dependence Measures

Functional dependence measure (Wu, 2005)⁸

$$\begin{aligned} X_i &= G(\dots, \varepsilon_{-1}, \varepsilon_0, \varepsilon_1, \dots, \varepsilon_i) & q \geq 2, \ i \geq 0, \ 1 \leq j \leq p \\ & \downarrow & \delta_{i,q,j} &= \left\| X_{ij} - X_{ij}^* \right\|_q \\ X_i^* &= G(\dots, \varepsilon_{-1}, \varepsilon_0^*, \varepsilon_1, \dots, \varepsilon_i) & \omega_{i,q} &= \left\| \left| X_i - X_i^* \right|_{\infty} \right\|_q \end{aligned}$$

High-dimensional dependence

⁸ W.B. Wu. Nonlinear system theory: another look at dependence. *PNAS*. 2005.

High-dimensional CLT: GA in \mathbb{R}^p

• Assume $\mathbb{E}X_i = \mu$. The $p \times p$ long-run covariance matrix is

$$\Sigma = (\sigma_{jk}) = \sum_{k=-\infty}^{\infty} \Gamma(k)$$
, where $\Gamma(k) = \mathbb{E}(X_0 - \mu)(X_k - \mu)^{\top}$.

• Let $Z = (Z_1, \ldots, Z_p)^{\top} \sim N(0, \Sigma)$.

Theorem

- **1** Assume there exists a constant c > 0 s.t. $\min_{1 \le j \le p} \sigma_{jj} > c$.
- 2 Under certain conditions on *n*, *p* and dependence measures.

$$\sup_{u \geq 0} \left| \, \mathbb{P} \bigg(\max_{1 \leq j \leq p} \, \sqrt{n} \big| \bar{X}_{nj} - \mu_j \big| / \sqrt{\sigma_{jj}} \leq u \bigg) - \mathbb{P} \bigg(\max_{1 \leq j \leq p} \big| Z_j \big| / \sqrt{\sigma_{jj}} \leq u \bigg) \, \right| \to 0$$

D. Zhang, W.B. Wu. Gaussian approximation for high dimensional time series. Annals of Statistics. 2017

High-dimensional CLT: GA in \mathbb{R}^p

• Assume $\mathbb{E}X_i = \mu$. The $p \times p$ long-run covariance matrix is

$$\Sigma = (\sigma_{jk}) = \sum_{k=-\infty}^{\infty} \Gamma(k), ext{ where } \Gamma(k) = \mathbb{E}(X_0 - \mu)(X_k - \mu)^{ op}.$$

• Let $Z = (Z_1, \ldots, Z_p)^{\top} \sim N(0, \Sigma)$.

Theorem

- **1** Assume there exists a constant c > 0 s.t. $\min_{1 \le j \le p} \sigma_{jj} > c$.
- Under certain conditions on n, p and dependence measures.

$$\sup_{u\geq 0} \left| \mathbb{P}\left(\max_{1\leq j\leq p} \sqrt{n} |\bar{X}_{nj} - \mu_j| / \sqrt{\sigma_{jj}} \leq u \right) - \mathbb{P}\left(\max_{1\leq j\leq p} |Z_j| / \sqrt{\sigma_{jj}} \leq u \right) \right| \to 0$$

Some applications

Application 1: Network connectivity detection by the inference of covariances.

Application 2: Inference for many posterior means in MCMC experiments.

Application 3: Testing the distribution of high dimensional data

$$\begin{pmatrix} \bullet & \bullet & \cdots & \bullet \\ \bullet & \bullet & \cdots & \bullet \\ \vdots & \vdots & \ddots & \vdots \\ \bullet & \bullet & \cdots & \bullet \end{pmatrix}_{p \times p} \longrightarrow \begin{pmatrix} \bullet \\ \bullet \\ \bullet \\ \vdots \\ \bullet \\ \bullet \end{pmatrix}_{p^{2}}, Y_{i} \longrightarrow \begin{pmatrix} h_{1}(Y_{i}) \\ h_{2}(Y_{i}) \\ \vdots \\ h_{p}(Y_{i}) \end{pmatrix}, \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{id} \end{pmatrix} \longrightarrow \begin{pmatrix} 1\{X_{i1} \leq x\} \\ 1\{X_{i2} \leq x\} \\ \vdots \\ 1\{X_{id} \leq x\} \end{pmatrix}$$

High-dimensional Inference for Parametric Time Series

Christopher A. Sims

Vector autoregressive (Sims, 1980)⁹

VAR(d): $X_i = A_1 X_{i-1} + \ldots + A_d X_{i-d} + \varepsilon_i$.

Old friend: Likelihood ratio test, *F*-test

Wald test, t-test

Statistical phenomenon in economic data:

high dimension

⇒ degrees of freedom left `

⇒ false rejection of the nul

⁹C.A. Sims. Macroeconomics and reality. *Econometrica*. 1980

High-dimensional Inference for Parametric Time Series

Christopher A. Sims

Vector autoregressive (Sims, 1980)⁹

VAR(d): $X_i = A_1 X_{i-1} + \ldots + A_d X_{i-d} + \varepsilon_i$.

Old friend: Likelihood ratio test, *F*-test

Wald test, *t*-test

Statistical phenomenon in economic data:

high dimension

⇒ degrees of freedom left \

fat-tailed residuals

⇒ false rejection of the null

⁹C.A. Sims. Macroeconomics and reality. *Econometrica*. 1980

Estimation and Inference

$$\text{Rewrite VAR(d) model as } \underbrace{Y}_{\textit{np} \times 1} = \underbrace{Z}_{\textit{np} \times \textit{dp}^2} \underbrace{\beta}_{\textit{dp}^2 \times 1} + \underbrace{\epsilon}_{\textit{np} \times 1}.$$

- Moderately high-dim case dp = o(n), establish asymptotic theory for $\hat{\beta} = \operatorname{argmin}_{\beta} |Y Z\beta|_2^2 = (Z^{\top}Z)^{-1}Z^{\top}Y$.
- Very high-dim case n = o(dp), consider Lasso/Danzig-type estimator

$$\hat{eta} = \mathop{\mathrm{arg\,min}}_{eta \in \mathbb{R}^{dp^2}} ig(|Y - Zeta|_2^2 + \lambda |eta|_1 ig), \ \hat{eta} = \mathop{\mathrm{arg\,min}}_{|eta|_1} \mathop{\mathrm{subject\,to}}_{|Z} \mathop{\mathrm{to}}_{|Z} Zeta - Z^{ op} Y|_\infty \leq \lambda$$

• For heavy-tailed innovations, apply robust estimation approach $\hat{\beta}_H = \operatorname{argmin}_{\beta} H(Y - Z\beta),$

Estimation and Inference

Rewrite VAR(d) model as
$$\underbrace{Y}_{np\times 1} = \underbrace{Z}_{np\times dp^2} \underbrace{\beta}_{dp^2\times 1} + \underbrace{\epsilon}_{np\times 1}.$$

- Moderately high-dim case dp = o(n), establish asymptotic theory for $\hat{\beta} = \operatorname{argmin}_{\beta} |Y Z\beta|_2^2 = (Z^{\top}Z)^{-1}Z^{\top}Y$.
- Very high-dim case n = o(dp), consider Lasso/Danzig-type estimator

$$\begin{split} \hat{\beta} &= \mathop{\rm arg\,min}_{\beta \in \mathbb{R}^{dp^2}} \big(|Y - Z\beta|_2^2 + \lambda |\beta|_1 \big), \\ \hat{\beta} &= \mathop{\rm arg\,min} |\beta|_1 \text{ subject to } |Z^\top Z\beta - Z^\top Y|_\infty \leq \lambda. \end{split}$$

• For heavy-tailed innovations, apply robust estimation approach $\hat{\beta}_H = \operatorname{argmin}_B H(Y - Z\beta),$

where H can be Huber, regression quantile, L^q regression, etc.

Granger Causality Test

Granger causality test: VAR-X model

$$X_{i} = AX_{i-1} + \varepsilon_{i},$$

$$Y_{i} = BX_{i-1} + CY_{i-1} + \xi_{i}.$$

Let $W_i = (X_i^\top, Y_i^\top)^\top$, $\eta_i = (\varepsilon_i^\top, \xi_i^\top)^\top$. Then we can write the model as

$$W_i = MW_{i-1} + \eta_i$$
, where $M = \begin{pmatrix} A & \mathbf{0} \\ B & C \end{pmatrix}$.

Test if $B = \mathbf{0}$.

Portmanteau Test

One-dimensional Box-Pierce, Ljung-Box portmanteau test statistic:

$$Q_{BP}=n\sum_{k=1}^{m}\hat{\gamma}_k^2 \quad ext{or} \quad Q_{LB}=n(n+2)\sum_{k=1}^{m}\hat{\gamma}_k^2/(n-k).$$

• Another natural choice of test statistic:

$$K_n = \sqrt{n} \max_{1 \le k \le m} |\hat{\gamma}_k - \gamma_k|.$$

For high dimensional data, need to establish an asymptotic theory on

$$Q_n = n \sum_{k=1}^{s_n} |\hat{\Gamma}_k - \mathbb{E}\hat{\Gamma}_k|_F^2 \quad \text{and} \quad \mathcal{K}_n = \sqrt{n} \max_{1 \le k \le s_n} |\hat{\Gamma}_k - \mathbb{E}\hat{\Gamma}_k|_{\infty},$$

where $s_n \to \infty$ and $s_n = o(n)$.

Further Considerations on Gaussian Approximation

Pearson's χ^2 test

Goal: Test the hypothesis that the observations $(N_1, ..., N_p)$ satisfy $(N_1, ..., N_p) \sim Multi(n; \theta_1, ..., \theta_p)$, where $\theta_1 + ... + \theta_p = 1$.

Pearson's χ^2 test

Goal: Test the hypothesis that the observations $(N_1, ..., N_p)$ satisfy $(N_1, ..., N_p) \sim Multi(n; \theta_1, ..., \theta_p)$, where $\theta_1 + ... + \theta_p = 1$.

Pearson's χ^2 Statistic

Pearson's χ^2 statistic:

$$\chi^2 = \sum_{j=1}^p \frac{(N_j - n\theta_j)^2}{n\theta_j} = \sum_{j=1}^p \frac{n(\hat{\theta}_j - \theta_j)^2}{\theta_j} \text{ with } \hat{\theta}_j = \frac{N_j}{n}.$$

Asymptotic theory: when p is small and fixed, $\chi^2 \Rightarrow \chi^2_{p-1}$, by the CLT

$$\{(N_j-n\theta_j)/(n\theta_j)^{1/2},\ j=1,\ldots,p\}\Rightarrow N(0,\Sigma),\ \text{with}\ \sigma_{jj'}=\mathbf{1}_{j=j'}-\sqrt{\theta_j\theta_{j'}}.$$

Rule of thumb in classical statistical textbooks: $n\theta_j \ge 5$ for all j.

Decision rule: For significance level $\alpha \in (0, 1)$, we reject the hypothesis if

$$\chi^2 > \chi^2_{p-1,1-\alpha}$$
, the $(1-\alpha)$ -th quantile of χ^2_{p-1} .

Motivating Example: Social Life Feeling Data

1490 respondents, 2⁵ distinct response patterns, 5 propositions:

- 1. Anyone can raise his living standard if he is willing to work at it.
- 2. Our country has too many poor people who can do little to raise their living standard.
- 3. Individuals are poor because of the lack of effort on their part.
- 4. Poor people could improve their lot if they tried.
- 5. Most people have a good deal of freedom in deciding how to live.

X	00000	01000	00001	10000	00100	01001	11000	10001	01100	00101	00010	10100	11001	01101	01010	11100
0	156	174	26	8	127	35	8	2	208	26	14	4	2	65	36	19
Е	162.0	174.0	22.2	5.2	122.3	31.9	8.1	1.1	208.7	30.2	16.9	8.3	2.3	65.3	37.6	19.3
x	00011	10101	10010	00110	01011	11101	11010	10011	01110	00111	10110	11011	01111	11110	10111	11111
0	9	4	1	66	13	10	5	3	195	16	18	3	129	31	9	68
E	5.8	3.0	1.8	56.5	16.2	8.8	5.3	0.9	182.7	31.8	11.2	3.4	130.9	49.9	9.6	56.7

x: response pattern

O: Observed frequency for each response pattern

E: Expected frequency after fitting the logit-probit model

Theory for Pearson's χ^2 Test Statistic

$$B_i = (B_{i1}, \dots, B_{ip}) \sim \textit{Multi}(1; \theta_1, \dots, \theta_p)$$
. Let $X_{ij} = (B_{ij} - \theta_j) / \sqrt{\theta_j}$. Then
$$\chi^2 = n \bar{X}_n^{\top} \bar{X}_n$$
.

Theorem: (i) Assume that for some $0 < \delta \le 1$,

$$L_{\delta} = \frac{\sum_{j=1}^{p} \theta_{j}^{-\delta}}{n^{\delta} p^{1+\delta/2}} \to 0.$$

Further assume $\sigma_p^2 = o(np)$, where $\sigma_p^2 = \sum_{j=1}^p \theta_j^{-1} - p^2$. Then

$$\sup_{t} |\mathbb{P}(\chi^{2} \leq t) - \mathbb{P}(\chi^{2}_{p-1} \leq t)| \to 0.$$

(ii) Assume $np = o(\sigma_p^2)$ and the Lindeberg condition holds for $W_i = (\sum_{i=1}^p B_{ij}/\theta_j - p)/\sigma_p$. Then we have the CLT

$$\sup |\mathbb{P}(\chi^2 - (p-1) \le n^{-1/2} \sigma_p t) - \Phi(t)| \to 0.$$
 (2)

2)

(1)

Diagonal-removed χ^2

Due to dichotomous asymptotic distributions of χ^2 , a diagonal-removed version is suggested:

$${}^*\chi^2 = \chi^2 - \frac{1}{n} \sum_{i=1}^n X_i^\top X_i = \chi^2 - \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^p \frac{(B_{ij} - \theta_j)^2}{\theta_j} = \chi^2 - \sum_{j=1}^p \frac{\hat{\theta}_j}{\theta_j} + 1$$

Theorem: Assume that for some $0 < \delta \le 1$,

$$L_{\delta} = \frac{\sum_{j=1}^{p} \theta_{j}^{-\delta}}{n^{\delta} p^{1+\delta/2}} \rightarrow 0.$$

Then

$$\sup_{t} |\mathbb{P}(^*\chi^2 \leq t) - \mathbb{P}(\chi^2_{p-1} - (p-1) \leq t)| = O(L_{\delta}^{1/(3+\delta)}) \to 0.$$

Key Tool: High-dimensional Invariance Principle

Let $X_i \in \mathbb{R}^p$, $i \in \mathbb{N}$, be i.i.d. random vectors with $\mathbb{E}(X_i) = 0$, $Cov(X_i) = \Sigma$. Let Y_i , $i \in \mathbb{N}$, be i.i.d. $N(0, \Sigma)$ random vectors.

In the classical case with fixed dimension, due to CLT ($\sqrt{n}\bar{X}_n \Rightarrow N(0,\Sigma)$),

$$\sup_{t} |\mathbb{P}(n\bar{X}_{n}^{\top}\bar{X}_{n} \leq t) - \mathbb{P}(n\bar{Y}_{n}^{\top}\bar{Y}_{n} \leq t)| \to 0.$$
 (*)

Special case (Pearson's χ^2 test): $B_i = (B_{i1}, \dots, B_{ip}) \sim \textit{Multi}(1; \theta_1, \dots, \theta_p)$. Let $X_{ij} = (B_{ij} - \theta_j) / \sqrt{\theta_j}$. Then

$$\chi^2 = n\bar{X}_n^{\mathsf{T}}\bar{X}_n.$$

Goal: Show (*) holds in the high-dimensional case where $p \to \infty$.

Social Life Feeling Date Analysis

_																	
	X	00000	01000	00001	10000	00100	01001	11000	10001	01100	00101	00010	10100	11001	01101	01010	11100
	0	156	174	26	8	127	35	8	2	208	26	14	4	2	65	36	19
	Е	162.0	174.0	22.2	5.2	122.3	31.9	8.1	1.1	208.7	30.2	16.9	8.3	2.3	65.3	37.6	19.3
_	x	00011	10101	10010	00110	01011	11101	11010	10011	01110	00111	10110	11011	01111	11110	10111	11111
	0	9	4	1	66	13	10		3			18	3	129	31	9	68
	Е	5.8	3.0	1.8	56.5	16.2	8.8	5.3	0.9	182.7	31.8	11.2	3.4	130.9	49.9	9.6	56.7

Comparison of two methods:

- Pearson's χ^2 test statistic $\chi^2=38.93$ with the degrees of freedom 2^5-1-10 (number of parameters) = 21 and p-value is 0.01 based on the approximated distribution χ^2_{21} , suggesting a significant lack of fit.
- New test statistic ${}^*\chi^2=4.79$ and the p-value is 0.21 based on the approximated distribution $\chi^2_{21}-21$, indicating the logit-probit model is satisfactory fitted to the data. Note that $L_\delta=0.029$ for $\delta=1$.

High-dimensional Scheme for Classical Problems

Goodness of fit

- Kolmogorov-Smirnov test
- Cramér-von Mises test
- \chi^2 test

$$\begin{aligned} \sup_{x \in I} |F_n(x) - F(x)| \\ \int_{x \in I} [F_n(x) - F(x)]^2 dF(x) \\ \text{e.g. Pearson's } \chi^2 \text{ test} \\ \text{Freeman-Tukey test} \end{aligned}$$

Joint distribution function

- Tail-dependence in stock return pairs: $x_1, \ldots, x_p \in \mathcal{I}, y_1, \ldots, y_p \in \mathcal{J}$ "Positive tail dependence": $P(X \ge x, Y \ge y) P(X \ge x)P(Y \ge y) > 0$
- Volatility of market index (e.g. Dow Jones Industrial Average (DJIA)) $\mathbb{P}(X_{n+1} \ge x | X_n \ge x) \mathbb{P}(X_{n+1} \ge x) \text{ for large } x$

Thank you for your attention!